\qquad Date \qquad

Unit 3: Linear Applications - Test Review

1. There is a negative relationship between the number of hours a student watches television and his or her social studies test score. Circle the appropriate scatterplot that represents this relationship.
a)

b)

c)

Number of Hours

1b. For scatterplots b) and d) above, draw a reasonable line of best fit (trend line). (Lines in Blue)
2. What is the relationship between the number of hours of sleep and the test score that was earned in the scatter plot shown below?

1) Undefined relation
2) negative relation
3) positive relation

2b) Draw a reasonable line of best fit (trend line) that models the data above.
\qquad Date \qquad
3. The table below gives the dates, heights, and number of stories (floors) for ten of the World's Tallest Buildings for their times. For example, in 1974 the Sears Tower was the World's Tallest Building.

Building	Year Built	Years since 1890	Height (feet)	Stories
New York World Building, New York	1890	0	309	20
Manhattan Life Insurance Building, New York	1894	4	348	18
Woolworth Building, New York	1913	23	792	60
Chrysler Building, New York	1930	40	1046	77
The Empire State Building, New York	1931	41	1250	102
The World Trade Center, New York	1972	82	1368	110
The Sears Tower, Chicago	1974	84	1450	110
The Petronas Towers, Kuala Lumpur, Malaysia	1998	108	1483	88
Taipei 101, Taiwan	2004	114	1670	101
Burj Khalifa, United Arab Emirates	2010	120	2716	160

Read more: Infoplease.com http://www.infoplease.com/spot/tallest-buildingstimeline.html\#ixzzlIb9gnpC3

1. Predict the height of the world's tallest building in 2020, using the graph to find the equation of the best-fit line
a. Identify the independent variable and dependent variable.

Independent variable:

b. Label the axes.
c. Draw a trend line by hand.
d. Calculate the equation of your trend line by hand. Show all

$$
\begin{aligned}
& y-100=\frac{100}{7}(x-40) \quad \frac{1}{0} \\
& y-1000=\frac{100}{7} x-\frac{4006}{7} \\
& y=\frac{100}{7} x+\frac{3000}{7}
\end{aligned}
$$

years since 1890
e. Use your equation to predict the height of the world's tallest building in 2020 Show all work. $\operatorname{set} x=130 \quad y=\frac{100}{7}(130)+\frac{3000}{7} \quad y=2285.71 \mathrm{ft}$
f. Is this an example of interpolation or extrapolation? Explain. Extrapolation \rightarrow aside the observed range of data

g. What does the slope represent in the context of this situation? (Include units!)

For every year since 1890, height of buildings increase by
14.29 ft per year on cubage
h. What does the y-intercept represent in the context of this situation? (Include units!)

$$
\text { tallest building was approximately } 428.6 \mathrm{ft} \text { high. }
$$

i. Are the data positively correlated, negatively, correlated or neither?
Positively correlated
j. If the data are correlated, is it a strong or weak correlation? Explain how you know.
k. Use your equation to predict when the height of the world's tallest building was 150 feet. Show all work.

$$
\begin{aligned}
& 150=\frac{100}{7} x+\frac{3000}{7} \\
& -278.57=\frac{100}{7} x
\end{aligned}
$$

4. Suppose you were able to use your graphing calculator to make a scatter plot of height in feet vs. number of stories.
a. If you press STAT and then click on EDIT. The table appears for you to enter your data.

Which variable would go under List 1 ? height in feet
Which variable would go under List 2? \qquad
b. To find the linear regression equation, you would press STAT again. Then you go right to CALC.

Then you click on 4: LINREG ($\mathbf{a x + b}$). The screen comes up to with this information:

$$
a=0.0593 \ldots \quad \mathrm{r}^{2}=0.916 \ldots \quad \mathrm{r}=10.874 \ldots \quad 0.9570 \ldots
$$

Write the linear regression equation, rounding to the nearest hundredth. \qquad $y=.06 x+10.87$
c. Use your equation to predict the number of stories in a 600 -foot high building.

$$
\text { set } x=600 \quad y=.06(600)+10.87
$$

$$
y=46.87 \frac{\text { so about }}{47 \text { stor res }}
$$

d. What is the slope? $m=, 06 \quad$ What does it represent in the context of this șituation?

That on querage for every I ft increase in building
\qquad

Name \qquad Date \qquad
e. What is the y-intercept? 10.87) What does it represent in the context of the situation?

A building with no height has 10.87 stories (does not make she... f. What is the correlation coefficient? 957 What does it tell you about the data?
Strong positive correlation
5) Explain the relationship between the fat grams and the total calories in fast food. Use a graph and an equation to explain. Write 4 sentences about the relationship.

Sandwich	Total Fat (\mathbf{g})	Total Calories
Hamburger	9	260
Cheeseburger	13	320
Quarter Pounder	21	420
Quarter Pounder with Cheese	30	530
Big Mac	31	560
Arch Sandwich Special	31	550
Arch Special with Bacon	34	590
Crispy Chicken	25	500
Fish Fillet	28	560
Grilled Chicken	20	440
Grilled Chicken Light	5	300

b. What is the value of the correlation coefficient? Describe the nature of the relationship. \backslash
$c=.97$ strong positive correlation
c. Use the equation to predict the amount of calories an item with 23 grams of fat would have.

$$
\begin{aligned}
& y=11.73(23)+193.85 \\
& y=463.64 \text { calorie } 105
\end{aligned}
$$

\qquad
\qquad

Linear Applications
6) The price of floppy diskettes is dependent upon how many diskettes are in the package. A computer store sells 10 floppy diskettes for $\$ 15$, and 30 diskettes for $\$ 40$.
Let $x=$ \# of disks (\#disks, price)

a. Write the two ordered pairs from the problem, then determine the equation for the price of a

$$
\begin{aligned}
& m=1.25 \quad \text { For every } 1 \text { disk, the price } \\
& \text { increases by } \$ 1.25
\end{aligned}
$$

c. Interpret the meaning of the y-intercept in the context of the problem. $(0,2.56)$

Cost of a package w/ 0 disks.

$$
\text { Really the cost of the packaging materials }(\text { box/p(asticwrep) }
$$

d. Determine the price of a box containing 100 diskettes. set $x=100$

$$
\begin{aligned}
& y=1.25(100)+2.50 \\
& y=\$ 127.5
\end{aligned}
$$

e. Determine the number of diskettes in a box that costs $\$ 107.50$.
set $y=107.50$

$$
\begin{aligned}
& 107.50=1.25 x+2.50 \\
& -2.50 \quad-2.50
\end{aligned}
$$

$$
\frac{105}{1.25}=\frac{1.25 x}{1.25}
$$

$$
x=84 \text { disks }
$$

$$
\begin{aligned}
& \text { package of floppy diskettes. } \\
& \begin{array}{l}
\text { package of floppy diskettes. } \\
(10,15) \\
(30,40)
\end{array} \quad \frac{40-15}{30-10}=\frac{25}{20}=1.25 \\
& \begin{aligned}
y-15 & =1.25(x-10) \\
y-15 & =1.25 x-12.5 \\
+15 & +15
\end{aligned} \\
& \begin{array}{l}
y-15=1.25(x-10) \\
y-15=1.25 x-12.5 \\
+15 \quad+15
\end{array} \\
& (30,40) \\
& y=1.25 x+2.50 \\
& \text { b. Interpret the meaning of the slope in the context of the problem. }
\end{aligned}
$$

